
Design and Analysis of Algorithm
Backtrack (II)

1 Introduction to Branch and Bound

2 Knapsack Problem

3 Maximum Clique Problem (MCP)

4 Traveling Salesman Problem

5 Continuous Postage Problem

1 / 40

Outline

1 Introduction to Branch and Bound

2 Knapsack Problem

3 Maximum Clique Problem (MCP)

4 Traveling Salesman Problem

5 Continuous Postage Problem

2 / 40

Combinatorial Optimization

Combinatorial Optimization. finding an optimal solution x from a
finite set of feasible/candidate solutions S.

Constraint: P (x) = 1 ⇐⇒ x ∈ S

Optimized function f(x) → define optimal solution
typical optimized function aims to maximize or minimize

Example of Knapsack
P (x) : 2x1 + 3x2 + 4x3 + 7x4 ≤ 10, xi ∈ N, i ∈ [4]

f(x) : max{x1 + 3x2 + 5x3 + 9x4}
W.L.O.G always assume that maximization of f(x) is desired

since one can find the minimum value of f(x) by finding the
maximum of g(x) = −f(x)

Extensively studied in operations research, applied mathematics
and theoretical computer science.

traveling salesman problem (TSP), minimum spanning tree
problem (MST), knapsack problem

3 / 40

Motivation

Combinatorial optimization problem can always be solved via
enumeration of candidate solutions and testing them all

enumeration can be done by brute-force searching the state
space tree

leaf node ⇔ candidate solution

For NP-hard problem, the state space is exponentially large.

Can we improve on the performance of brute-force search of state
space tree?

4 / 40

Branch-and-Bound Method

Figure: 1960, British: Ailsa Land and Alison Harcourt

the most commonly used technique for solving NP-hard opti-
mization problems

5 / 40

Key Elements of Branch-and-Bound

A B&B algorithm operates according to two principles:
Branching. recursively split the search space into smaller
spaces, then try to find maximal f(x) on these smaller spaces
Bounding. keep track of a bound value, compute an upper
bound of f(x) in the smaller space, and use this bound value
and the upper bound to “prune” the search space, eliminate
candidate solutions that will not contain an optimal solution

Key points of good “pruning”
the setting of bound value
the computing of upper bound

6 / 40

Bound Value

Meaning: maximal optimized function value of current feasible
solutions
Initial Value: 0 for maximize problem and ∞ for minimize problem
Update

when find the first solution
when find a better solution

v

one feasible solution x

B = f(x)

7 / 40

Estimate/Bound Function

Input: node of tree, say, v
Output: an upper bound of all feasible solutions in the subtree
with input node as root
Property: let v′ be a child node of v

v

one feasible solution x

E(v) ≥ E(v′)

the set feasible solutions shrinks
the upper bound is getting smaller

The choice of estimate function is not unique
easy to compute vs. accurate

8 / 40

Backtracking and Pruning

When navigating to a node v, the algorithm will stop branching
and backtrack to parent node

the set of feasible solutions A(v) is empty: no leaf node in the
subtree satisfies the constraint predicate (same as naive
backtracking with default constraint)

the estimate function value is less than current bound value

E(v) < B

simply prune this subtree and backtrack

9 / 40

Outline

1 Introduction to Branch and Bound

2 Knapsack Problem

3 Maximum Clique Problem (MCP)

4 Traveling Salesman Problem

5 Continuous Postage Problem

10 / 40

Example from Knapsack Problem with Repetition

Example of knapsack problem (weight limit=10)

label weight value
1 2 1

2 3 3

3 4 5

4 7 9

Constrained predicate P :

2x1 + 3x2 + 4x3 + 7x4 ≤ 10, xi ∈ N, i ∈ [4]

Optimized function f : max{x1 + 3x2 + 5x3 + 9x4}

11 / 40

Choice of Bound Function

For each node v = (x1, x2, . . . , xk), compute the upper bound of
optimized function value of feasible solutions in the subtree

Preprocessing: sort vi/wi via a decreasing order, i ∈ [n]

E(v) = K(v) + ∆(v)

K(v): the value already loaded in the knapsack
∆(v): the maximum value that can be further loaded

Computation of ∆(v): find the first index j ≤ (k, n] such that
wj ≤ remaining weight

∆(v) = remaining weight × vj/wj (j exists – can be loaded)
∆(v) = 0 (j does not exist – cannot be loaded anymore)

12 / 40

Knapsack Instance

max{x1 + 3x2 + 5x3 + 9x4}
2x1 + 3x2 + 4x3 + 7x4 ≤ 10, xi ∈ N, i ∈ [4]

Re-arrange the label such that
vi
wi

≥ vi+1

wi+1

After rearrangement

max{9x1 + 5x2 + 3x3 + x4}
7x1 + 4x2 + 3x3 + 2x4 ≤ 10, xi ∈ N, i ∈ [4]

13 / 40

Branch-and-Bound Example
max{9x1 + 5x2 + 3x3 + x4}

7x1 + 4x2 + 3x3 + 2x4 ≤ 10, xi ∈ N, i ∈ [4]

maximum value
current weight

10·9/7
0

9+3·5/4
7

1

15 11
9+3·3/3

7

2 1 0

16 13
12+0
10

3 2 1

12
1012

01

9+3·1/2
7

0

10·5/4
0

0

10+2·3/3
15

5+6·3/3
11

10·3/3
0

2 1 0

14 / 40

Branch-and-Bound Example
max{9x1 + 5x2 + 3x3 + x4}

7x1 + 4x2 + 3x3 + 2x4 ≤ 10, xi ∈ N, i ∈ [4]

maximum value
current weight

10·9/7
0

9+3·5/4
7

1

15 11
9+3·3/3

7

2 1 0

16 13
12+0
10

3 2 1

12
1012

01

9+3·1/2
7

0

10·5/4
0

0

10+2·3/3
15

5+6·3/3
11

10·3/3
0

2 1 0

14 / 40

Branch-and-Bound Example
max{9x1 + 5x2 + 3x3 + x4}

7x1 + 4x2 + 3x3 + 2x4 ≤ 10, xi ∈ N, i ∈ [4]

maximum value
current weight

10·9/7
0

9+3·5/4
7

1

15 11
9+3·3/3

7

2 1 0

16 13
12+0
10

3 2 1

12
1012

01

9+3·1/2
7

0

10·5/4
0

0

10+2·3/3
15

5+6·3/3
11

10·3/3
0

2 1 0

14 / 40

Branch-and-Bound Example
max{9x1 + 5x2 + 3x3 + x4}

7x1 + 4x2 + 3x3 + 2x4 ≤ 10, xi ∈ N, i ∈ [4]

maximum value
current weight

10·9/7
0

9+3·5/4
7

1

15 11
9+3·3/3

7

2 1 0

16 13
12+0
10

3 2 1

12
1012

01

9+3·1/2
7

0

10·5/4
0

0

10+2·3/3
15

5+6·3/3
11

10·3/3
0

2 1 0

14 / 40

Branch-and-Bound Example
max{9x1 + 5x2 + 3x3 + x4}

7x1 + 4x2 + 3x3 + 2x4 ≤ 10, xi ∈ N, i ∈ [4]

maximum value
current weight

10·9/7
0

9+3·5/4
7

1

15 11
9+3·3/3

7

2 1 0

16 13
12+0
10

3 2 1

12
1012

01

9+3·1/2
7

0

10·5/4
0

0

10+2·3/3
15

5+6·3/3
11

10·3/3
0

2 1 0

14 / 40

Branch-and-Bound Example
max{9x1 + 5x2 + 3x3 + x4}

7x1 + 4x2 + 3x3 + 2x4 ≤ 10, xi ∈ N, i ∈ [4]

maximum value
current weight

10·9/7
0

9+3·5/4
7

1

15 11
9+3·3/3

7

2 1 0

16 13
12+0
10

3 2 1

12
1012

01

9+3·1/2
7

0

10·5/4
0

0

10+2·3/3
15

5+6·3/3
11

10·3/3
0

2 1 0

14 / 40

Branch-and-Bound Example
max{9x1 + 5x2 + 3x3 + x4}

7x1 + 4x2 + 3x3 + 2x4 ≤ 10, xi ∈ N, i ∈ [4]

maximum value
current weight

10·9/7
0

9+3·5/4
7

1

15 11
9+3·3/3

7

2 1 0

16 13
12+0
10

3 2 1

12
1012

01

9+3·1/2
7

0

10·5/4
0

0

10+2·3/3
15

5+6·3/3
11

10·3/3
0

2 1 0

14 / 40

Branch-and-Bound Example
max{9x1 + 5x2 + 3x3 + x4}

7x1 + 4x2 + 3x3 + 2x4 ≤ 10, xi ∈ N, i ∈ [4]

maximum value
current weight

10·9/7
0

9+3·5/4
7

1

15 11
9+3·3/3

7

2 1 0

16 13
12+0
10

3 2 1

12
1012

01

9+3·1/2
7

0

10·5/4
0

0

10+2·3/3
15

5+6·3/3
11

10·3/3
0

2 1 0

14 / 40

Branch-and-Bound Example
max{9x1 + 5x2 + 3x3 + x4}

7x1 + 4x2 + 3x3 + 2x4 ≤ 10, xi ∈ N, i ∈ [4]

maximum value
current weight

10·9/7
0

9+3·5/4
7

1

15 11
9+3·3/3

7

2 1 0

16 13
12+0
10

3 2 1

12
1012

01

9+3·1/2
7

0

10·5/4
0

0

10+2·3/3
15

5+6·3/3
11

10·3/3
0

2 1 0

14 / 40

Thinking and Summary

Q. Is the preprocessing step necessary?
A. No. But it can speed up the computation of bound function.
Q. Other possible choice of bound function?
A. Yes. But make sure it is easy to compute, hit a sweet balance
between the cost and gain of pruning

Branch-and-Bound method ; Combinatorial Optimization
bound value setting and updating
estimate function (represent the optimistic estimation) ⇒
guarantee that pruning will not miss solution
pruning: compare bound value and estimate function value

15 / 40

Outline

1 Introduction to Branch and Bound

2 Knapsack Problem

3 Maximum Clique Problem (MCP)

4 Traveling Salesman Problem

5 Continuous Postage Problem

16 / 40

Concepts of Graph

Let G = (V,E) be an undirected graph
Subgraph: G′ = (V ′, E′), where V ′ ⊆ V , E′ ⊆ E

Cograph: G = (V,E), where E is the co-set of E regarding the
complete graph over V
Clique: A complete subgraph of G
Maximum Clique: A clique with the largest possible number of
vertices.

MCP is a classical combinatorial optimization problem in
graph theory.

1

2

3

4

5
maximum clique = {1, 3, 4, 5}

17 / 40

Independent Set and Clique (独立集与团)
Let G = (V,E) be an undirected graph
Independent Set. A subset U of V , s.t. ∀u, v ∈ U , (u, v) /∈ E

Maximum Independent Set. An independent set of largest possible
size for G.

Claim: U is the maximum clique of G if and only if U is the
maximum independent set of G.

independent set ↔ clique in co-graph

1 2

3

45

6

{1, 3, 6}
maximum clique of G
maximum independent set of G

18 / 40

Applications of Maximum Clique

Numerous applications of MCP
coding, cluster analysis, computer vision, economics, mobile
communication, VLSI design

Example from coding. Noisy in the channel may disturb code
transmission. Consider confusion graph G = (V,E), V is a finite
set of symbols

(u, v) ∈ E or E(u, v) = 1 ⇔ u and v are likely confused

u

v
i

j

t n

19 / 40

Coding Design

In coding design, we usually use a string to encode a symbol.
Confusion of codeword. We say two strings xy and uv are likely to
be confused if and only if

(E(x, u) = 1 ∧ E(y, v) = 1)∨
(x = u ∧ E(y, v) = 1) ∨ (E(x, u) = 1 ∧ y = v)

a b
d

c

e

G

H

ac

ad

ae

bc

bd

be

G×H⇒

Veticies in G×H are candidate codewords
two codewords are confused if there is an edge between them

To reduce noisy disturb, we need to find MIS in G×H.
20 / 40

Maximum Clique Problem (最大团)

Problem. Given an undirected graph G = (V,E), where
V = {1, . . . , n}, find its maximum clique.
Solution. An n-dimension vector (x1, x2, . . . , xn) ∈ {0, 1}n,
xk = 1 if and only if k is in the maximum clique of G.
Brute Force Algorithm. For every subset of V , check if it forms a
clique, i.e., a complete subgraph.

subsets of V is 2n ; exponential time complexity O(n2) · 2n

21 / 40

Branch-and-Bound Method

Search tree: Subset tree (a binary tree: the path from leaf node to
root determines a subset)
Node (x1, x2, . . . , xk): have checked nodes 1, 2, . . . , k, xi = 1
denotes i belongs to the current clique, i ∈ [k]

Constraint. xk+1 = 1 if and only if it connects to all the nodes in
the current clique
Bound value: # vertices in the current maximum clique
Estimate function: the largest number of vertices that current
clique may expand to: E(v) = C(v) + (n− k).

C(v): # of vertices in the current clique (initial value is 0)
k: the depth of v

E is simple but too coarse ; worse-case complexity is O(n2n),
asymptotically same as the brute-force algorithm

22 / 40

Demo of Search

1

2

3

4

5

initial value B = 0

B = 3

MC = {1, 2, 4}, B = 3

E = 3

E = 3 ≤ B, backtrack

B = 4

MC = {1, 3, 4, 5}, B = 4

E = 3 E = 3 < B, backtrack

E = 4

E = 4 ≤ B, backtrack

MC = {1, 3, 4, 5}

23 / 40

Demo of Search

1

2

3

4

5

initial value B = 0

B = 3

MC = {1, 2, 4}, B = 3

E = 3

E = 3 ≤ B, backtrack

B = 4

MC = {1, 3, 4, 5}, B = 4

E = 3 E = 3 < B, backtrack

E = 4

E = 4 ≤ B, backtrack

MC = {1, 3, 4, 5}

23 / 40

Demo of Search

1

2

3

4

5

initial value B = 0

B = 3

MC = {1, 2, 4}, B = 3

E = 3

E = 3 ≤ B, backtrack

B = 4

MC = {1, 3, 4, 5}, B = 4

E = 3 E = 3 < B, backtrack

E = 4

E = 4 ≤ B, backtrack

MC = {1, 3, 4, 5}

23 / 40

Demo of Search

1

2

3

4

5

initial value B = 0

B = 3

MC = {1, 2, 4}, B = 3

E = 3

E = 3 ≤ B, backtrack

B = 4

MC = {1, 3, 4, 5}, B = 4

E = 3 E = 3 < B, backtrack

E = 4

E = 4 ≤ B, backtrack

MC = {1, 3, 4, 5}

23 / 40

Demo of Search

1

2

3

4

5

initial value B = 0

B = 3

MC = {1, 2, 4}, B = 3

E = 3

E = 3 ≤ B, backtrack

B = 4

MC = {1, 3, 4, 5}, B = 4

E = 3 E = 3 < B, backtrack

E = 4

E = 4 ≤ B, backtrack

MC = {1, 3, 4, 5}

23 / 40

Demo of Search

1

2

3

4

5

initial value B = 0

B = 3

MC = {1, 2, 4}, B = 3

E = 3

E = 3 ≤ B, backtrack

B = 4

MC = {1, 3, 4, 5}, B = 4

E = 3 E = 3 < B, backtrack

E = 4

E = 4 ≤ B, backtrack

MC = {1, 3, 4, 5}

23 / 40

Demo of Search

1

2

3

4

5

initial value B = 0

B = 3

MC = {1, 2, 4}, B = 3

E = 3

E = 3 ≤ B, backtrack

B = 4

MC = {1, 3, 4, 5}, B = 4

E = 3 E = 3 < B, backtrack

E = 4

E = 4 ≤ B, backtrack

MC = {1, 3, 4, 5}

23 / 40

Demo of Search

1

2

3

4

5

initial value B = 0

B = 3

MC = {1, 2, 4}, B = 3

E = 3

E = 3 ≤ B, backtrack

B = 4

MC = {1, 3, 4, 5}, B = 4

E = 3 E = 3 < B, backtrack

E = 4

E = 4 ≤ B, backtrack

MC = {1, 3, 4, 5}

23 / 40

Demo of Search

1

2

3

4

5

initial value B = 0

B = 3

MC = {1, 2, 4}, B = 3

E = 3

E = 3 ≤ B, backtrack

B = 4

MC = {1, 3, 4, 5}, B = 4

E = 3 E = 3 < B, backtrack

E = 4

E = 4 ≤ B, backtrack

MC = {1, 3, 4, 5}

23 / 40

Demo of Search

1

2

3

4

5

initial value B = 0

B = 3

MC = {1, 2, 4}, B = 3

E = 3

E = 3 ≤ B, backtrack

B = 4

MC = {1, 3, 4, 5}, B = 4

E = 3 E = 3 < B, backtrack

E = 4

E = 4 ≤ B, backtrack

MC = {1, 3, 4, 5}

23 / 40

Demo of Search

1

2

3

4

5

initial value B = 0

B = 3

MC = {1, 2, 4}, B = 3

E = 3

E = 3 ≤ B, backtrack

B = 4

MC = {1, 3, 4, 5}, B = 4

E = 3 E = 3 < B, backtrack

E = 4

E = 4 ≤ B, backtrack

MC = {1, 3, 4, 5}

23 / 40

Demo of Search

1

2

3

4

5

initial value B = 0

B = 3

MC = {1, 2, 4}, B = 3

E = 3

E = 3 ≤ B, backtrack

B = 4

MC = {1, 3, 4, 5}, B = 4

E = 3 E = 3 < B, backtrack

E = 4

E = 4 ≤ B, backtrack

MC = {1, 3, 4, 5}

23 / 40

Outline

1 Introduction to Branch and Bound

2 Knapsack Problem

3 Maximum Clique Problem (MCP)

4 Traveling Salesman Problem

5 Continuous Postage Problem

24 / 40

Traveling Salesman Problem (TSP)

Problem. Given n cities and the distances between each pair of
cities, what is the shortest possible route that visits each city and
returns to the origin city?

c3

c1

c3 c4

5

6 3

10
9

9

25 / 40

Modeling

Input. A finite set of cities C = {c1, c2, . . . , cn}, distance
e(ci, cj) = e(cj , ci) ∈ Z+, 1 ≤ i < j ≤ n.

Solution. A permutation of (1, 2, . . . , n) — (i1, i2, . . . , in) such
that:

min
{

n∑
i=1

e(cki mod n
, cki+1 mod n

)

}

State space. Permutation tree, node (i1, i2, . . . , ik) represents
route up to k steps

Constraint. Let S = {i1, i2, . . . , ik}, then ik+1 ∈ V − S, cause
every node can be visited once and only once.

26 / 40

Bound Value and Estimate Function

Bound Value: the length of current shortest route

Estimate Function: let the length of shortest edge connected to ci
is ℓi, dj is the j-th length in the current route

E([i1, . . . , ik]) =

k−1∑
j=1

dj + ℓik +
∑
ij /∈S

ℓij

the first part: length of traveled route
the second part: lower bound of rest route

27 / 40

Example of Bound Function

1 2

3
4

9

5

4

7

2

13

E([i1, . . . , ik]) =

k−1∑
j=1

dj+ℓik+
∑

ij∈V−S

ℓij

Partial route: (1, 3, 2), E([1, 3, 2]) = (9 + 13) + 2 + 2 = 26,
S = {1, 3, 2}, V − S = {4}

9 + 13: length of traveled route
2: length of shortest edge connected to node 2

2: length of shortest edge connected to node 4

28 / 40

Demo of Search

1

2

3

4

B = 29

4

3

B = 23

3

2

E = 26

4

2

4

2

3

3

2

29 / 40

Demo of Search

1

2

3

4

B = 29

4

3

B = 23

3

2

E = 26

4

2

4

2

3

3

2

29 / 40

Demo of Search

1

2

3

4

B = 29

4

3

B = 23

3

2

E = 26

4

2

4

2

3

3

2

29 / 40

Demo of Search

1

2

3

4

B = 29

4

3

B = 23

3

2

E = 26

4

2

4

2

3

3

2

29 / 40

Demo of Search

1

2

3

4

B = 29

4

3

B = 23

3

2

E = 26

4

2

4

2

3

3

2

29 / 40

Demo of Search

1

2

3

4

B = 29

4

3

B = 23

3

2

E = 26

4

2

4

2

3

3

2

29 / 40

Demo of Search

1

2

3

4

B = 29

4

3

B = 23

3

2

E = 26

4

2

4

2

3

3

2

29 / 40

Demo of Search

1

2

3

4

B = 29

4

3

B = 23

3

2

E = 26

4

2

4

2

3

3

2

29 / 40

Complexity Analysis (1/2)

leaf nodes: (n− 1)!

each leaf node corresponds to a route
each route (actually a circle) has n cities ; equivalence under
shift ; at most (n− 1)! different routes

Further observation: solution is a cycle in undirected graph ;
clockwise and counter-clockwise are symmetric ; at most
(n− 1)!/2 different routes (two equivalences do not overlap)

1
2

3

4
5

6

7

8

1
8

7

6
5

4

3

2

30 / 40

Complexity Analysis (1/2)

leaf nodes: (n− 1)!

each leaf node corresponds to a route
each route (actually a circle) has n cities ; equivalence under
shift ; at most (n− 1)! different routes

Further observation: solution is a cycle in undirected graph ;
clockwise and counter-clockwise are symmetric ; at most
(n− 1)!/2 different routes (two equivalences do not overlap)

1
2

3

4
5

6

7

8
1

8

7

6
5

4

3

2

30 / 40

Complexity Analysis (2/2)

Complexity of E(·) is O(1) ; traveling each route requires O(n)

E(i1, . . . , ik) =

k−1∑
j=1

dj + ℓik +
∑

ij∈V−S

ℓij

update when move to its child node ik+1 (add dk − ℓik),
where dk = e(ik, ik+1)

E(i1, . . . , ik, ik+1) =
k∑

j=1

dj + ℓik+1
+

∑
ij∈V−(S+ik+1)

ℓij

=

k∑
j=1

dj +
∑

ij∈V−S

ℓij

the initial value is E([i1]) =
∑k

j=1 ℓij

The overall worse case complexity is O(n!)

31 / 40

Complexity Analysis (2/2)

Complexity of E(·) is O(1) ; traveling each route requires O(n)

E(i1, . . . , ik) =

k−1∑
j=1

dj + ℓik +
∑

ij∈V−S

ℓij

update when move to its child node ik+1 (add dk − ℓik),
where dk = e(ik, ik+1)

E(i1, . . . , ik, ik+1) =

k∑
j=1

dj + ℓik+1
+

∑
ij∈V−(S+ik+1)

ℓij

=

k∑
j=1

dj +
∑

ij∈V−S

ℓij

the initial value is E([i1]) =
∑k

j=1 ℓij

The overall worse case complexity is O(n!)

31 / 40

Complexity Analysis (2/2)

Complexity of E(·) is O(1) ; traveling each route requires O(n)

E(i1, . . . , ik) =

k−1∑
j=1

dj + ℓik +
∑

ij∈V−S

ℓij

update when move to its child node ik+1 (add dk − ℓik),
where dk = e(ik, ik+1)

E(i1, . . . , ik, ik+1) =

k∑
j=1

dj + ℓik+1
+

∑
ij∈V−(S+ik+1)

ℓij

=

k∑
j=1

dj +
∑

ij∈V−S

ℓij

the initial value is E([i1]) =
∑k

j=1 ℓij

The overall worse case complexity is O(n!)

31 / 40

Outline

1 Introduction to Branch and Bound

2 Knapsack Problem

3 Maximum Clique Problem (MCP)

4 Traveling Salesman Problem

5 Continuous Postage Problem

32 / 40

Continuous Postage Problem

Problem. Suppose a country issues stamps of n different
denominations, and requires a maximum of m sheets per envelope.

Goal. For a given value of n and m, find the best design for the
face value of the stamp so that the maximum continuous postage
interval starting from postage 1 can be posted on an envelope.

Example: n = 5, m = 4

design 1: V = (1, 3, 11, 15, 32) ⇒ continuous range [1, . . . , 70]

design 2: V = (1, 6, 10, 20, 30) ⇒ continuous range [1, 2, 3, 4]

33 / 40

Algorithm Design

Feasible solution. (x1, x2, . . . , xn), x1 = 1, x1 < x2 < · · · < xn

Search strategy. DFS

Branching Constraint. At node v = (x1, x2, . . . , xk), the largest
continuous range is [1, . . . , rk], then xk+1 ∈ [xk + 1, . . . , rk + 1]

left boundary: the denomination is of ascending order
right boundary: otherwise, if xk+1 > rk +1, rk +1 can not be
expressed ; a breakpoint

How to compute rk?

34 / 40

Computation of rk

According to the definition, the largest continuous range [1, rk]
derived from (k,m)-combination implies rk requires at most m
stamps while rk + 1 requires at least m+ 1 stamps.
We will use the above observation to compute rk.

Define a function hk(v) that computes minimal number of
stamps for value v using the first k-types of stamps with face
value (x1, . . . , xk):
Now, we can compute rk via

rk = min{v|hk(v) ≤ m,hk(v + 1) > m}

Such value (breakpoint) may not be unique, we have to compute
the min. Consider the instance (1, 5, 20), m = 3.

1 h3(3) = 3, h3(4) = ∞: the first breakpoint is 4

2 h3(22) = 3, h3(23) = ∞: the second breakpoint is 23

35 / 40

Computation of hk

hk(v): the minimal number of stamps that yields value v using the
first k types of stamps

hk(v) =

min0≤t≤m{t+ hk−1(v − txk)} if k > 1

v if k = 1
+∞ if v > mvk

Demo of n = 4, m = 3

(x1 = 1)
h1(0) = 0, h1(1) = 1, h1(2) = 2, h1(3) = 3, h1(4) = +∞,
r1 = 3 ; range of 2rd stamp is [2, 4]
(x1 = 1, x2 = 2)
h2(0) = 0, h2(1) = 1, h2(2) = 1, h2(3) = 2, h2(4) = 2,
h2(5) = 3, h2(6) = 3, h2(7) = 4, r2 = 6 ; range of 3st
stamp is [3, 7]
(x1 = 1, x2 = 2, x3 = 3)
h3(0) = 0, h3(1) = 1, h3(2) = 1, h3(3) = 1, h3(4) = 2,
h3(5) = 2, h3(6) = 2, h3(7) = 3, h3(8) = 3, h3(9) = 3,
h3(10) = 4, r3 = 9 ; range of 4th stamp is [4, 10]

36 / 40

Part of the Search Tree: n = 4, m = 3

1

2 3 4

3
4 5 6 7 3 4 5 6 7

6 5
7

4 5 6 7 8 9 10 6 7 7

Best design is (1, 4, 6, 7) ⇒ h4(21) = 3, h4(22) = 4 ; largest
continuous range [1, . . . , 21]

branching is not fixed at the very beginning, need dynamic
programming to compute the possible branches

37 / 40

Summary (1/3)

General steps for solving combinatorial optimization problem
solution ; vector
state space ; search tree (partial vector is inner node, vector
is leaf node)
searching order (DFS, BFS)

Brute-force algorithm: travel the entire tree

Can we implement the brute-force algorithm smartly?
38 / 40

Summary (2/3)

Yes. The backtracking technique! Backtracking need criteria
Basic backtracking

Derive the criteria from the default constraint: test if the
Domino property holds

Additional optimization trick: it is possible to explore
symmetric property to reduce the size the search tree

Example: loading problem, graph coloring problem
39 / 40

Summary (3/3)

Advanced backtracking
Branch-and-bound method: in addition to default criteria,
introduce bound value and estimate function to prune the
search tree ; further reduce the complexity ; a fine-grained
criteria

Example: MCP, TSP

When applying the branch-and-bound method, one need to
find a trade-off between the gain and cost

40 / 40

	Introduction to Branch and Bound
	Knapsack Problem
	Maximum Clique Problem (MCP)
	Traveling Salesman Problem
	Continuous Postage Problem

